

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

A robust approach to routing queries in structured P2P networks

VIJAYA BHASKAR MADGULA, ASSISTANT PROFESSOR, vijaya.bhaskar2010@gmail.com

DIGALA RAGHAVARAJU, ASSISTANT PROFESSOR

raghava.digala@gmail.com

BALAJI SUNIL CHANDRA, ASSISTANT PROFESSOR

hod.cse@svitatp.ac.in

Dept of CSE. Sri Venkateswara Institute of Technology,

N.H 44, Hampapuram, Rapthadu, Anantapuramu, Andhra Pradesh 515722

ABSTRACT—

Documents and resources may be difficult to

locate in an unstructured P2P network. This

paper presents a query routing method that

takes into consideration various factors. These

include nodes with varying degrees of

altruism, different processing capacities, and

different class-based likelihoods of query

resolution at nodes. These factors can be

influenced by query loads and the distribution

of files and resources across the network. We

show that this method stabilises query load

under a grade of service constraint, which is

the assurance that the paths taken by queries

meet certain class-based restrictions on the a

priori likelihood of their resolution. We clearly

characterise and statistically compare the

capacity region of such systems to that of

random walk-based searches. Additionally, the

performance advantages in terms of mean

delay for the recommended technique are

shown by

findings from the computational model. We

also look at other ways to simplify things,

determine parameters, and adjust to different

class-based query resolution probabilities and

traffic volumes. These words are all indexes:

peer-to-peer, search, stability, backpressure,

irregular walk.

INTRODUCTION

When it comes to delivering services like file

sharing, video streaming, expert/advice

sharing, sensor networks, databases, etc., P2P

systems are becoming more and more popular

due to their distributed nature, scalability, and

robustness. Resolving queries or finding

files/resources effectively is one of the

fundamental functionalities of such systems.

This paper deals with this issue. For example,

see [1]–[10] for a selection of publications

delving into the topic of effective

search/routing mechanism design in both

organised and unstructured P2P networks.

Peers, data, and resources in structured

networks are arranged in overlays with

specified

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

surfaces and attributes. To attain excellent

forwarding-delay qualities, one might create

search methods that conduct name resolution

using coordinate systems of distributed hash

tables (DHTs), as shown, for example, in [2].

How keys are allocated in such systems might

affect the query flow. Consequently, key

assignments to peers and data/service objects

must be proactive or reactive in order to

provide load balancing, as shown in [11], and

potentially taking use of network hierarchies

[10]. To ensure fast query resolution,

especially in dynamic situations with

peer/content turnover or when reactive load

balancing is needed, the fundamental

challenge in such networks is not

search/discovery, but rather preserving the

structural invariants. However, effective

searches are difficult to implement in

unstructured networks because to their mostly

ad hoc overlay topologies, despite the fact that

these networks are easy to set up and maintain.

Nodes in completely decentralised P2P

networks are only aware of their overlay

neighbours. Due to the lack of data, most

unstructured network search methods have

relied on limited-scope floods, simulated

random walks, or variations thereof [3]-[5].

Contact time, or the number of hops needed to

locate the target, has been the primary metric

for assessing different search algorithms in this

field of study. for example, go to [4]-[6] for

work on (random) graphs and the spectral

theory of Markov chains. Sadly, these search

approaches don't hold up well under heavy

query loads in heterogeneous environments

where peers' service capacities or resolution

likelihoods differ. Systems that combine

organised and unstructured elements, such as

FastTrack and Gnutella2, help to alleviate some

of the drawbacks of completely unstructured

networks. Some peers act as "super-peers" in

these systems, which employ a straightforward

two-tiered hierarchy. In a hub-and-spoke

configuration, these high-level nodes are well-

connected to both other super-peers and a group

of lower-level nodes [12]. Even though these

systems are more scalable, the search methods

that have been suggested still rely on variations

of floods and random walks. According to the

research in [7], one way to implement reverse-

path forwarding is for peers to store the results

of previous requests in a cache. The goal is to

intelligently "bias" their forwarding choices by

connecting query classes with neighbours who

can best resolve them based on prior

experience, thereby learning the optimum

method to send certain classes of requests.

There is a lot of extra work involved with this

method, and it isn't load sensitive or erformance

guaranteed just yet.

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

Fig. 1. A network of super-peers G = (N ,

L). Queries of a given class traverse

potentially different routes. A query either

gets resolved or gets evicted from the

network upon receiving a grade of service.

1. It adapts on the fly to account for variations

in the network-wide query loads and

the'service rate,' which is a measure of a super-

peer's altruism. This is the first study that we

are aware of that thoroughly considers such

heterogeneity while designing a search method

for P2P networks.

2. The foundation is the process of categorising

requests. As a kind of name aggregation, this

categorization helps nodes learn how to send

inquiries by inferring the likelihoods of

resolving class queries.

3. Our method is completely decentralised

since it achieves stability under a Grade of

Service (GoS) limitation on query resolution

and only shares information with neighbours.

The GoS constraint is equivalent to making

sure that every query class adheres to

a path that it is more likely to be addressed

along.

4. Our stable approach has several intriguing

modifications that may be evaluated and used

to increase delay performance and make it more

implementable by reducing complexity. Our

formal proof focuses on fully linked super-peer

networks and their stability under backpressure

with aggregated queues, where aggregation is

based on inquiries' histories. For situations

where material is randomly put, for example,

this gives a foundation for significantly

decreasing complexity via approximations.

Settling down. We established our fundamental

model of the system in Section II. Section III

presents the stable protocol and various

variations, while Section IV describes the

network stability zone. In Section IV, we

provide a few numerical findings. Section V

delves into methods for estimating the

likelihood of query resolution and strategies for

simplifying implementation.

I. SYSTEM MODEL

A directed graph G = (N,L) represents the

overlay network, with N nodes representing

the super-peers and L ⇓ N ⇥N representing

the overlay connections. These links are

considered to be symmetric, meaning that if

(i, j) 2 L, then (j, i) 2 L as well.

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

This collection of neighbours of super-peer

i is denoted as N(i). Keep in mind that in a

hybrid network, subordinate peers aren't

really represented, but rather linked to the

super-peer they're supposed to be working

with. Every super-peer i is assigned a

service rate µi, which is proportional to the

positive integer number of queries it is

willing to settle or forward in each slot,

assuming that time is allocated in slots. In

this case, we'll pretend that super peers log

all of the resources and files accessible at

each subordinate peer. When a subordinate

peer becomes a super peer, this knowledge

is relayed to their superior peers. Even

though they can't take part in forwarding or

querying, subordinate peers may start a

query request at a super peer. final decision

Let R represent the collection of all

network-accessible files and resources and

C represent the set of all resource classes

that have been declared in advance. Let Rc

⇢ R denote the files/resources associated

with class c for every c 2 C. Let Rc i be the

collection of class c files and resources

accessible at super-peer i or its subordinate

peers for every c in C and i in N. For every

given time t, let Ai(t) represent the number

of inquiries that reached super-peer i or its

subordinates, and

make a query's likelihood of being

resource/file r 2 R. Any query that looks for

a resource in Rc is considered a class c

query. The number of classes c is

represented by Ac i (t). questions that come

to super-peer i or its subordinates at time t.

We have clearly defined arrival rates, (c i :

8i 2 N, c 2 C), where c i is the mean arrival

rate of class c queries at node i, since we

assume these random variables are rate

ergodic, independent across slots, and have

limited second moments. Class C queries

that fail to be answered at node i may be

passed on to a neighbouring node. Along

with its class, a node's history—the

collection of nodes it has visited in the

past—determines the possibility that it can

handle such a query. The history is

presented in an unorganised manner. Take

the hypothetical case of three nodes in a

network that share the class c-related files

and resources as an example. If a class c

query is tried and fails at two of these nodes,

it will definitely be resolved at the third

node. In different settings, a decreased

conditional chance of resolution at the next

node may be seen if a search for a certain

media file fails at many nodes; this is

because the file is probably uncommon.

STABLE QUERY FORWARDING POLICY

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

Presented here is a distributed, stable, easy-

to-implement, and GoS-ensuring query

scheduling and forwarding strategy.

We start with a definition of the capacity

region and stability for such networks.

Stability & Capacity Region Because it

encompasses non-ergodic rules, the definition

of network stability provided in [14] will be

used. Nevertheless, in the case of ergodic

policies, it is the same as the stability standards

provided in [13], [22]. The 'overflow' function

of a particular queue process, Q⌧ i (t), is

denoted by g⌧ i (↵).

Definition 1. A stable queue Q⌧ i (t) is one in

which the probability that g⌧ i (↵)! 0 increases

as ↵! 1. If every queue is stable, then the

network is stable. The next step is to establish

the network's "capacity region" for query

loads. In order for the following linear

restrictions on f to have a viable solution, the

set of query arrival rates that make up the

capacity area 𝑇 is defined as follows: The set

(i, j) is divided into two parts: L and T. Limited

capacity: for every i between 2 and N

We call f variables that govern the flow of data

the flow of types ⌧ 0 2 E1 i (⌧) that arrive i

and are not resolved at i (left hand side) equals

the flow of type ⌧ that leaves node i, where

(4) guarantees that a node's incoming flow is

less than its service rate and (5) states the same

thing. Our conservation equations aim to

capture the following elements, which

differentiate them from the usual

multicommodity flow conservation laws:

resulting from peer-to-peer search systems: (a)

the likelihood of query resolution at each node

depending on its history, (b) changes in query

"types" as they are passed to different nodes, (c)

calculating the quality of service received by

query based on its history, and (d) developing

an appropriate exit strategy when receiving

sufficient service. Remember that 𝑇0 represents

the inside of 𝑇. Appendix A proves the

following theorem, which establishes a

connection between the network's stabilzability

and its capacity area. Keep in mind that this

finding holds true in any scenario where the

range of stabilizable rates is not explicitly

extended, even when all possible future

outcomes are known. Additionally, other

adjustments might be done, even though we are

now concentrating on policies where p

represents the conditional probabilities of query

class resolutions, subject to the GoS change.

For the aforementioned conclusion, the only

constraints on p are that all queries must exit the

network at some point and that revisits to nodes,

while permitted, have no chance of completing

the question.

Stable policies Basically, with 2 𝑇0, it is

possible to identify a workable set of network

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

flows and, as seen in the demonstration of

Theorem 1.b, use this information to create a

fixed randomised policy that stabilises the

network. And yet, such an all-encompassing

programme

might not work in practice, and there's no

guarantee that arrival rates will be known in

advance either. In addition, it is currently

difficult to create a reliable search algorithm

since routing choices impact the type/queue to

which a query belongs, even if they should be

based on instantaneous queue loads at the

neighbours. In the distributed dynamic

algorithm that we have developed below,

every node i uses its own and its neighbours'

queue statuses to make choices; all it has to

know, or estimate, is p⌧ i, ⌧ 2 T, which is

local knowledge.

Appendix B contains the proof of the theorem

mentioned before. By including anticipated

queue backlogs into Lyapunav drifts, the proof

takes care of the development of query types

and the unpredictability in query resolution.

Although stable, the fundamental backpressure

method is quite inefficient. The highest

relative backlog queue is the only one that each

node in a slot serves. Blank requests are given

priority over other non-empty queues if that

specific queue has less than half of the queries

waiting in it. We have recently developed a

more robust and effective technique that utilises

work conservation by only serving blank

requests when all queues are not empty.

Compared to the aforementioned fundamental

backpressure, this offers significant delay

advantages, as we will show. algorithm. The

concept is that the work conserving strategy

will serve the queries in the second most

backlogged queue if the total number of queries

in that queue is less than the overall service rate.

This process continues until either µi queries

are serviced or all queues are empty. Here we

provide the algorithm's formal definition.

Fig. 2. Boundaries of capacity regions for the stable

backpressure algorithm and random walk policy for

the 3 cases.

II. NUMERICAL RESULTS AND

SIMULATIONS

Here, we compare our stable backpressure

algorithms to a baseline random walk

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

policy and quantitatively assess the

increases in the capacity area that each may

achieve. A completely linked network

consisting of six nodes is being considered.

Set N equal to {1, 2,..., 6}. Due to the fact

that a super-peer network is intended to be

very

completely linked network may serve as an

apt metaphor for the reality of the situation.

Two query classes, c1 and c2, are under

consideration. First, let's pretend that all

the nodes have the same arrival rate for

class c1, and second, let's claim that class

c2 has a rate of 2. This makes the capacity

area simpler to understand by reducing its

size from 12 to 2. In addition, for both

classes, the GoS parameters (c) are set to

0.9. As soon as a node is serviced, the basic

random walk policy has it forward any

unanswered queries to a neighbour that it

has randomly selected. Queries are

directed to nodes that have not been visited

before since, in a fully linked network,

there is no benefit to letting queries revisit

nodes. Similar to how we can characterise

the feasible capacity zone for backpressure

(defined in Definition 2), we can do the

same for the random walk policy. It is the

collection of arrival rates that meet the

conditions (4)–(6) and other constraints

that guarantee that the outgoing flows of

each type at each node are evenly

distributed among the nodes that have not

been visited. These are officially provided

by,

Fig. 3. Delay performance of the

backpressure algorithms and random walk

for Case 1.

We then evaluate the backpressure methods'

and random walk's delay performance in Case

1. Keeping the arrival rates constant, Fig. 3

shows the mean delay for both groups as a

function of the rates. It verifies what we

suspected: the fundamental backpressure

method is stable, but inefficient since it doesn't

conserve work. Performance is greatly

enhanced by the work saving algorithm.

Reducing the number of times queries must

visit nodes further boosts performance. This

adjustment improves the backpressure

algorithm's delay performance relative to the

random walk policy under identical revisit

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

limitations and GoS, particularly under heavier

loads.

III. IMPLEMENTATION AND

COMPLEXITY

Estimating query resolution probabilities

So far, we have presupposed that the likelihood

of a query's resolution is known across all

kinds. They are readily estimable in practice.

To make sure that every node may get fair

estimates, let's pretend that a tiny percentage of

all queries are designated as 'RW,' sent via the

random walk policy with a long TTL, and

given precedence in scheduling over the rest.

By setting the TTL high enough, we guarantee

that every node will get an equal number of

queries and kinds, allowing us to make fair

estimations. When a query is not tagged as

"RW," our backpressure strategy is applied

depending on the predicted probability of the

query's resolution. In time t, a node i gets 'RW'

tagged samples at a rate of O(t✏). This means

that the estimating error has a standard

deviation of O(q 1 ✏t). So, for sufficiently big

t, the error is negligible. The time-averaged

performance of the policy stays the same if the

contents are static, allowing one to cease the

estimating procedure after a big enough period

t. Another option is to estimate the query such

that we can persistently monitor changes in

resolution probability.

resolution probabilities utilising control

algorithm samples, without using a separate

unbiased random walk separately. Under time

scale separation between content dynamics and

search dynamics, a stochastic approximation

framework [23] may be used to concurrently

attain system stability and estimation

convergence.

Reducing complexity Just like traditional

backpressure-based routing, our rules have one

big flaw: every node has to tell its neighbours

about the status of its many non-empty queues.

There are as many queues per node as there are

flows (commodities) in a network that uses

backpressure-based routing. If we consider the

worst-case scenario, we find that the number of

queues per node is equal to the number of query

types it is capable of handling, which is equal to

half of N. While there will be a performance hit,

the overheads will be significantly reduced with

the help of our modest modifications and

estimates. The main point is that different kinds

of queries with "similar" histories (i.e.,

comparable conditional probability of

resolution) should share a queue and be defined

as equivalence classes. A such example would

be to group together any query types of class c

that have visited the same amount of nodes k.

Applied GIS ISSN: 1832-5505

 Vol-9 Issue-03 July 2021

This would reduce the as many queues as

possible to ⇥(|C||N |) or higher. We will also

demonstrate how to further decrease overheads

by lowering the number of queues by roughly

grouping comparable query types according to

their classes c and the total amount of class c

files/resources they have viewed in nodes in

H(⌆).

⇥(|C|L) where L is a collection of quantization

levels. If files and resources are made

accessible in the network at random, such

searches have likely encountered comparable

chances.

CONCLUSION

Finally, for unstructured P2P networks that

include super-peers, we presented a new,

distributed, and trustworthy search strategy.

When compared to more conventional random

walk methods, our backpressure-based

strategy may increase capacity by as much as

68%. In addition, we made some adjustments

to the method that should make it easier to

implement.

IV. REFERENCES

[1] Wikipedia, “Peer-to-peer Wikipedia, free

encyclopedia.”

http://en.wikipedia.org/wiki/Peer-to-peer,

2011.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D.

Karger, M. Kaashoek, F. Dabek, and H.

Balakrishnan, “Chord: a scalable peer-to-

peer lookup protocol for internet

applications,” IEEE/ACM Transactions on

Networking, vol. 11, no. 1, pp. 17–32, 2003.

[3] X. Li and J. Wu, “Searching techniques

in peer-to-peer networks,” in Handbook of

Theoretical and Algorithmic Aspects of Ad

Hoc, Sensor, and Peer-to-Peer Networks,

(CRC Press, Boca Raton, USA), 2004.

[4] C. Gkantsidis, M. Mihail, and A. Saberi,

“Random walks in peer-to-peer networks,” in

Proc. IEEE INFOCOM, 2004.

[5] C. Gkantsidis, M. Mihail, and A. Saberi,

“Hybrid search schemes for unstructured

peer to peer networks,” in Proc. IEEE

INFOCOM, 2005

http://en.wikipedia.org/wiki/Peer-to-peer

